Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372536

RESUMO

Legumes processing involves large amounts of water to remove anti-nutrients, reduce uncomfortable effects, and improve organoleptic characteristics. This procedure generates waste and high levels of environmental pollution. This work aims to evaluate the galacto-oligosaccharide (GOS) and general carbohydrate composition of legume wastewaters and assess their potential for growing lactic acid bacteria. Legume wastewater extracts were produced by soaking and/or cooking the dry seeds of chickpeas and lentils in distilled water and analysed using high-performance liquid chromatography with refractive index detection. GOS were present in all extracts, which was also confirmed by Fourier transform infrared spectroscopy (FTIR). C-BW extract, produced by cooking chickpeas without soaking, provided the highest extraction yield of 3% (g/100 g dry seeds). Lentil extracts were the richest source of GOS with degree of polymerization ≥ 5 (0.4%). Lactiplantibacillus plantarum CIDCA 83114 was able to grow in de Man, Rogosa, and Sharpe (MRS) broth prepared by replacing the glucose naturally present in the medium with chickpeas' and lentils' extracts. Bacteria were able to consume the mono and disaccharides present in the media with extracts, as demonstrated by HPLC and FTIR. These results provide support for the revalorisation of chickpeas' and lentils' wastewater, being also a sustainable way to purify GOS by removing mono and disaccharides from the mixtures.

2.
Crit Rev Food Sci Nutr ; 61(16): 2659-2690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32590905

RESUMO

The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: ß-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of ß-galactosidases and fructosyltransferases, but there is still great place for innovative developments.


Assuntos
Enzimas Imobilizadas , Hexosiltransferases , Tecnologia , beta-Galactosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...